This is where navigation should be.

PEBFUN - Sampled, periodized EB-spline

Usage

g=pebfun(L,w)
g=pebfun(L,w,width)
[g,nlen]=pebfun(...)

Input parameters

L Window length.
w Vector of weights of g
width integer stretching factor, the support of g is width*length(w)

Output parameters

g The periodized EB-spline.
nlen Number of non-zero elements in out.

Description

pebfun(L,w) computes samples of a periodized EB-spline with weights w for a system of length L.

pebfun(L,w,width) additionally stretches the function by a factor of width.

[g,nlen]=ptpfundual(...) as g might have a compact support, nlen contains a number of non-zero elements in g. This is the case when g is symmetric. If g is not symmetric, nlen is extended to twice the length of the longer tail.

If \(nlen = L\), g has a 'full' support meaning it is a periodization of a EB spline function.

If \(nlen < L\), additional zeros can be removed by calling g=middlepad(g,nlen).

References:

K. Gröchenig and J. Stöckler. Gabor frames and totally positive functions. Duke Math. J., 162(6):1003--1031, 2013.

S. Bannert, K. Gröchenig, and J. Stöckler. Discretized Gabor frames of totally positive functions. Information Theory, IEEE Transactions on, 60(1):159--169, 2014.

T. Kloos and J. Stockler. Full length article: Zak transforms and gabor frames of totally positive functions and exponential b-splines. J. Approx. Theory, 184:209--237, Aug. 2014. [ DOI | http ]

T. Kloos. Gabor frames total-positiver funktionen endlicher ordnung. Master's thesis, University of Dortmund, Dortmund, Germany, 2012.

T. Kloos, J. Stockler, and K. Gröchenig. Implementation of discretized gabor frames and their duals. IEEE Transactions on Information Theory, 62(5):2759--2771, May 2016. [ DOI ]