Filterbanks and block-processing in LTFAT

Zdeněk Průša

Acoustics Research Institute (ARI)
Austrian Academy of Sciences, Vienna

3rd SPLab Workshop, 1.11.2013
is a Matlab/Octave toolbox for working with time-frequency analysis and synthesis. It is intended both as an educational and a computational tool. The toolbox provides a large number of linear transforms including Gabor and wavelet transforms along with routines for constructing windows (filter prototypes) and routines for manipulating coefficients.
Started in 2004 by Peter L. Søndergaard, 1.0 released in 2011.

- Tested and well documented – mat2doc
- MEX/OCT interfaces to the backend lib in C.
- Build system independent of Matlab’s mex command.
- Cross-platform, Matlab/Octave, open source, GPL3

http://ltfat.sourceforge.net
Discrete Gabor Transform $R = 16$

... a picture is worth a thousand words ...

\[F = \text{frame('dgtreal',{'hann',882},60,1000)}; \]
\[\text{plotframe}(F,\text{frana}(F,f),fs,'dynrange',60); \]
Windowed MDCT $R = 1$

```matlab
F = frame('wmdct',{'hann',882},441);
```
Wavelet Packet subtree $R = 1$

\[F = \text{frame('wfbt', {'sym10', 8})} \]
Erblets $R \sim 12.6$

```matlab
[g,a]=erbfilters(fs,'fractional','L',numel(f),'M',200,'real');
F = frame('filterbankreal',g,a,numel(g));
```
1. Current state of LTFAT
2. Filterbanks
3. Block-processing framework (and live demonstration)
Current state of LTFAT

Current development version 1.4.2.
Version 2 until end of the year!

Main features in LTFAT 2.0:
- Frames framework
- Wavelets module
- Block-processing framework
The mathematical idea of a "frame" fits well with the notion of class in OOP:

- Each frame has some properties: upper and lower bounds, redundancy, etc.:
 \[\Rightarrow \text{object attributes.} \]

- Each frame is always associated with analysis and synthesis operators:
 \[\Rightarrow \text{object methods.} \]

- Simple custom object system using structs.
 - Old (pre 2008a) and new OOP in Matlab.
 - Octave compatibility.
F = frame – create a new frame
frana(F,...) – frame analysis operator
frsyn(F,...) – frame synthesis operator
framematrix(F,...) – matrix form of synthesis operator
framedual(F,...) – construct a dual frame
frametight(F,...) – construct a tight frame
franalasso(F,...) – minimizes $\frac{1}{2}||f - Fc||^2_2 + \lambda||c||_1$ \text{ISTA}
franaiter(F,...) – iterative analysis using synthesis operator
frsyniter(F,...) – iterative synthesis using analysis operator
frsynabs(F,...) – synthesis using only abs. values (Griffin-Lim)
frameaccel(F,L) – precompute stuff for given length
plotframe(F,...) – plot frame coefficients
Wavelets module

- `fwt` – Discrete Wavelet Transform (Mallat’s algorithm)
- `ufwt` – Undecimated `fwt` (À-trous algorithm).
- `wfbt/uwfbt` – (Undecimated) Arbitrary tree-shaped Wavelet filterbank.
- `wpbest` – Best basis selection from bases derived from the wavelet packet.
- `fwt2` – Basic 2D Discrete wavelet transform.
- `plotwavelets` – common plotting routine.
- Wavelet filters library.
- Helper functions for building FB trees.
- Arbitrary number of filters in the basic filterbank – framelets, etc.
- Arbitrary filter trees – DT-\(\mathbb{C}\)WT
- \texttt{fwt2filterbank}, \texttt{wfbt2filterbank} – tree filterbank conversion routines using multirate identity.
Common routines for FIR, frequency defined and band-limited filters.

\[c_m(n) = \sum_{l=0}^{L-1} f(l) \, g_m(a_m n - l), \]

(1)

where \(L = k \cdot \text{lcm}(a_m), \) \(k \in \mathbb{Z}^+,\) \(f \in \mathbb{C}^L\) and \(a_m n - l \) is computed modulo \(L.\)

Filter generating routines:

- **firfilter** – struct, main fields `.h`, `.offset`
- **blfilter** – struct, main fields `.H`, `.foff`

Effective implementation in C.
Two purposes:

- A computational routine.
- Filterbank itself as a Frame.

- \texttt{filterbankdual, filterbankbounds} – dual filterbanks and frame bounds for \underline{uniform} and \underline{painless} filterbanks.
- \texttt{nonu2ufilterbank} – nonuniform to uniform filterbank transform. Each filter g_m is replaced by $p = \text{lcm}(a_m)/a_m$ delayed versions of itself $z^{-ka_m}G_m(z)$ for $k = 0, \ldots, p - 1$
A simple framework for a real-time audio processing directly from Matlab/Octave.

block('playrec');

p = blockpanel({'GdB','Gain',-20,20,0,21});

while p.flag
 gain = blockpanelget(p,'GdB');
 f = blockread(1024);
 blockplay(f*10^(gain/20));
end

p.close();
Based on: Portaudio (http://www.portaudio.com) and Playrec (http://www.playrec.co.uk).

Main features:

- Interfaces to JACK, ASIO, etc., channel patching.
- No additional toolbox dependency.

Limitations:

- At 44.1 kHz, block sizes ~1000 samples \Rightarrow latency ~23ms.
- Inherent latency issues from Portaudio.
Configurable control panel

Real-Time visualization

JAVA based, independent of Matlab GUI framework.
Basic idea: Analyze (and synthetize) a block stream by any transform available in the Frames framework.

Two issues:
- Speed – backend in C, precomputing using blockframeaccel
- Block artifacts
 - Slicing window
 - Overlap-save/overlap-add
Slicing window

Half-length block overlapping and weighing by a slicing window to reduce time aliasing.

Advantages:

- Works for any transform.
- Delay depends on the block length and is independent of the transform.
- Slicing windows need not add up to 1 – dual slicing window.

Disadvantages:

- Coefficients reflects the shape of the slicing window.
- The blocking artifact can still be perceived.
Employs overlap-save method for the analysis and overlap-add method for the synthesis.

Advantages:
- Coefficients can be processed or visualized directly.
- Completely avoids the blocking artifact.

Disadvantages:
- Requires FIR filters/windows.
- Increased processing delay roughly equal to the longest filter/window length.
Live demo
Releasing LTFAT 2.0

Various interfaces to LTFAT or LTFAT backend.

- S_TOOLS-STx – acoustic speech and signal processing application developed at ARI.
- Sonic Visualizer (http://www.sonicvisualiser.org/) – open-source audio visualizing and annotating application.
- Python bindings

Better GUI for the frame multiplier editor – mulaclab.
Thank you for listening.

http://ltfat.sourceforge.net/

Download, try, learn, share, contribute...