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Abstract—We propose a method for the Fourier-side design of
nonuniform filter banks. Given a frequency scale and a frequency
response prototype, we obtain a family of filters that are uniform
shape when observed on the given scale. We provide necessary
and sufficient conditions for the resulting (analysis) filter bank to
form a (tight) frame. Implementation of the filter bank analysis
and reconstruction are discussed and complemented with a
number of examples.

I. INTRODUCTION

Herein, we introduce a novel family of filter banks (FBs)
adapted to nonlinear frequency scales. Uniquely determined by

the choice of a single prototype filter and a warping function

that determines the desired frequency scale.

The desire for FBs providing adapted time-frequency reso-
lution has sparked a wealth of research and the construction

of various systems with vastly different properties. The most

prominent such systems are those in the extended wavelet [1]
family, all of which are adapted to a logarithmic frequency

scale, constant-Q FBs [2]–[4] which are in fact wavelet FBs
in disguise and Gammatone FBs [5], [6]. Other important

examples include discrete variants of the α-transform [7], [8],

a parametrized family of FBs adapted to frequency scales
between linear and logarithmic.

The idea of warping of the frequency axis to obtain adapted

filter banks is not entirely new and was already used in the

proof of the so called painless conditions for wavelets [9]. A
number of other methods for obtaining warped filter banks

have been proposed, e.g. by applying a unitary basis transfor-

mation to Gabor or wavelet atoms [10]–[13]. Although unitary
transformation bequeaths basis (or frame) properties to the

warped atoms, the resulting system is not anymore a filter

bank. Instead, the warped system provides an undesirable,
irregular time-frequency tiling, see [12].

Closer to our own approach, Braccini and Oppenheim [14],

as well as Twaroch and Hlawatsch [15], propose a warping

of the filter frequency responses only, by defining a unitary
warping operator. However, in ensuring unitarity, the authors

give up the property that warping is shape preserving when
observed on the warped frequency scale. In this contribution,

we trade the unitary operator for a shape preserving warping

in order to construct tight and well-conditioned frames more
easily.

II. NOTATION AND PRELIMINARIES

In the following, we consider signals in ℓ2pZq sampled at

the frequency ξs. We write f̂pξq :� Ffpξq �
°

Z
f rlse�2πilξ,

for the Fourier transform on ℓ1pZq and its extension to ℓ2pZq,
denoting its inverse by f̌ :� F�1f . Further, we require the

translation operator defined by Tkf � f r� � ks. The inner

product of two signals x, y is 〈x, y〉 �
°

n xrns � yrns and by

}�} :� }�}2, we denote the natural norms on ℓ2pZq and L
2
pTq,

respectively.

A (K�1 channel, nonuniform analysis) filter bank (FB) can

be considered as a collection tgn,kun,k of K�1 shift-invariant

systems
gn,krls :� Tnak

qgkrls, ak P N, (1)

with filters qgk and downsampling factors ak. In this contribu-

tion, we consider qgk P ℓ2pZq only. The Fourier transform ĝ of

a filter g is called frequency response. A FB forms a frame,
if there are positive constants A,B such that

A}f}2 ¤

Ķ

k�0

¸

nPZ

|cn,k|
2
¤ B}f}2, � f P ℓ2pZq, (2)

where cn,m � xf, gn,ky are the FB coefficients. tgn,kun,k is
a tight frame, if A � B. The frame property ensures perfect

reconstruction from the FB coefficients by means of a dual

frame t�gn,kun,k and the formula

f rls �

Ķ

k�0

¸

nPZ

cn,k�gn,krls. (3)

Note that, for arbitrary downsampling factors ak, we cannot
guarantee that there is a dual frame that is also a K�1 channel

FB with downsampling factors ak.

III. WARPED FILTER BANKS

We call a continuous, increasing function F : D Ñ R,
where D P tR,R�

u, a warping function. to be odd for con-

venience. A warping function determines a mapping from the
linear frequency axis (measured in Hz) onto some nonlinear

frequency scale and the composition θ � F is a function that

has the shape of θ, when observed on the new scale. Hence,
the system

tθF,kukPZ
, with θF,k :� ppTkθq � F q . (4)
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Fig. 1. Frequency responses of warped filters using a Hann window prototype:
(top-left) logarithmic warping F pxq � 10 logpxq, (top-right) ERBlet warping
F pxq � 21.4 sgnpxq log10p1 � |x|{229q, (bottom-left) square root warping

F pxq � sgnpxqp
a

1� |x| � 1q and (bottom-right) linear warping F pxq �

x{100. The systems use 1 bin/unit and were restricted to the frequency range
0 Hz-8.82 kHz for visualization.

clearly provides a sort of shift-invariant system on the scale

described by F , see Figure 1.

Warped FBs are constructed by taking (a suitable subset
of) tθF,kukPZ

as frequency responses gk, i.e. we define gk :�
?

akθF,k, where the role of the normalization factor is clarified
in the next sections. The main task is the restriction of the

system onto the frequency range determined by the sampling

rate of ξs Hz, i.e. s � ξs{2, ξs{2s � R or s0, ξs{2s � R�.
Although there are various ways of performing this restriction,

they should provide similar results for all reasonable signals.

Hence, we propose here a straightforward approach.

First, choose a continuous function θ with short support
rc, ds :� supppθq, contained in F�1

pIfrq. Here Ifr �

r�ξs{2, ξs{2s, resp. Ifr �s0, ξs{2s. In the first case, we define

kmax � maxtk P Z : F�1
pk � dq ¤ ξs{2u

kmin � mintk P Z : F�1
pk � cq ¡ �ξs{2u

and obtain the frequency responses

gkpξ{ξsq :�
?

akθF,kpξq, ξ P Ifr, (5)

for all k P rkmin, kmaxs and

gkmax�1pξ{ξsq :�

�

�akmax�1

¸

kPZzrkmin,kmaxs

|θF,kpξq|
2

�



1{2

, (6)

ξ P Ifr.

In the second case, i.e. Ifr �s0, ξs{2s, it would be theoreti-

cally sufficient to copy the scheme above and set kmin � �8.
To obtain a FB with a finite number of filters, select kmin and

use instead

gkmax�1
pξ{ξsq :�

�

akmax�1

¸

k¡kmax

|θF,kpξq|
2

�1{2

,

gkmin
pξ{ξsq :�

�

akmin

¸

k¤kmin

|θF,kpξq|
2

�1{2

,

(7)

ξ P Ifr.

We denote a warped FB by Gpθ, F, aq :� tgn,kun,k, where
a :� takukPIK , gn,k � Tnak

F�1gk for all k P IK and IK �

rkmin, kmax � 1s. Note that, in the case D � R�, Gpθ, F, aq
depends on the choice of kmin.

The implementation we provide, see Section V, additionally

allows for the selection of an integer bins{unit parameter
B. For B � 1, the warped filters are constructed from the

translates Tk{Bθ instead. This is equivalent to setting Fnew �

B � F and θnewpxq � θpx{Bq.

Remark 1. The case Ifr �s0, ξs{2s of analytic FBs is relevant,

e.g. for the analysis of real-valued signals such as audio. Se-

lecting an appropriate cut-off kmin�1 is particularly important
for implementation, where we in fact consider sequences of

finite length L. Here, the frequency resolution is determined by
the sampling rate ξs and the signal length L. Since an infinite

number of filters is placed in any neighborhood of the zero

frequency, the discretized filters in the low frequency region
do not bear any resemblance to their continuous model and

will show completely different time-frequency concentration.

Therefore, we propose a single filter, covering all these critical
cases and preserving the summation properties again.

In practice, the high- and low-pass filters gkmax�1
and gkmin

can often be chosen such that the information contained in the

corresponding bands is irrelevant to the user.

IV. WARPED FB FRAMES

In addition to providing filters with uniform frequency

resolution on the desired frequency scale, the warped FB

structure allows the derivation of easy-to-satisfy necessary and
sufficient frame conditions. The following proposition is a

direct consequence of a result for general FB frames, see [16]

for analogous results for continuous-time signals.

Proposition 1. Let θ be such that supppθq � rc, ds for some

constants c   d and Gpθ, F, aq a corresponding warped FB

as defined by (5) and (6), resp. (5) and (7). If Gpθ, F, aq is a

frame, then there exist positive constants A,B such that

0   A ¤

¸

kPZ

|Tkθ|
2
¤ B   8. (8)

If furthermore, for all k P IKztkmax � 1u , a�1

k ¥ F�1
pd �

kq � F�1
pc� kq and

a�1

kmax�1
¥ 1� F�1

pc� kmax � 1q � F�1
pd� kminq,

if D � R, respectively

a�1

kmax�1
¥ 1� F�1

pc� kmax � 1q,

a�1

kmin
¥ F�1

pd� kminq



if D � R�, then Gpθ, F, aq is a frame with frame bounds A,B

if and only if (8) holds. In that case, the system Gprθ, F, aq,
with

rθ �
θ

°

k |Tkθ|2
, a.e.. (9)

is a dual frame for Gpθ, F, aq.

Remark 2. Clearly, this implies that
°

kPZ |Tkθ|
2
� const. is

necessary for (and sometimes equivalent to) the tight frame

property. Such families are easy to construct, though.

Sometimes, higher downsampling rates than the ones al-

lowed by the second part of Prop. 1 are desired. In that case,
it becomes harder to determine the frame property and unclear

whether there is a dual frame of the form Gprθ, F, aq for some

function rθ.
For any (general) filter bank, it is a consequence of the FB

structure that it forms a frame if
¸

kPIK

a�1

k |gk|
2
pξq

¡

¸

kPIK

�

a�1

k |gk|

ak�1
¸

n�1

|T
na
�1

k

gk|pξq

�

�: Apξq,

(10)

for all ξ P Ifr{ξs as this implies invertibility of the frame

operator. In signal processing terms, the equation above means
that the combined aliasing components (using the analysis FB

for synthesis also) are smaller in magnitude than the main

component.
For a warped FB Gpθ, F, aq, the condition a�1

k ¥ F�1
pd�

kq�F�1
pc�kq implies that the right hand side of (10) equals

0. Consequently, if we assume the warping function F and

prototype θ to be smooth, in particular if θ is nonincreasing
away from some central point, then we can increase the

downsampling rates ak to some degree beyond the bounds
given in Prop. 1 without violating maxξ Apξq   A. Hence,

we can reduce the redundancy of the warped FB, often by a

surprising amount, without violating the frame property, see
Section V. For the situation of continuous-time signals, a more

explicit result is presented in [16, Theorem 2].

V. IMPLEMENTATION & EXAMPLES

In the previous sections, warped FBs were defined for
prototypes θ with small support only, producing a family

of bandlimited filters. Although non-bandlimited filters are

feasible, provided we employ a suitable treatment of frequency
range borders, in general we cannot hope to obtain FIR filters.

For finite time signals in CL, results equivalent to Section

IV hold and discrete systems are obtained by sampling the
torus T appropriately, yielding discrete variants of the gk.

Hence, we can employ algorithms based on fast convolution
via application of FFT. To analyze signals of arbitrary length

or sequences in ℓ2pZq, a suitable blocking scheme, see [4] for

a scheme that respects the frame property, can be used.
We use FB algorithms from the open-source MAT-

LAB/octave toolbox LTFAT (‘Large time-frequency analysis

toolbox’) [17] (http://ltfat.sourceforge.net/). The methods for

warped filter banks are provided in the current development
version, available on the webpage above, and scheduled to be

included in the next release. In particular, warpedblfilter

and warpedfilters compute warped filters and provide a
full warped FB, respectively, when supplied with a prototype

function, a warping function and its inverse. Moreover, the
method erbfilters provides an option for using warped

filters instead of the usual symmetric ones, although the

border treatment in the latter deviates slightly from what
we describe here. Analysis, synthesis and other filter bank

operations are provided in the filterbank, blockproc

and frames packages of LTFAT. For more information and
usage instructions, refer to the LTFAT documentation.

We provide MATLAB scripts that reproduce the

figures and tables in this contribution on the webpage
http://ltfat.sourceforge.net/notes/039/, where the test signal

used in Figure 2 can also be found.

Reconstruction: In general, the existence of a dual FB having

the same number of filters rgk and upsampling factors a

as Gpθ, F, aq cannot be guaranteed. Therefore, we use three
different approaches to compute the action of the synthesis

FB:

(i) In the setting of Prop. 1, i.e. for bandlimited filters with
sufficiently dense sampling, we use (9) to efficiently compute

the dual FB. Synthesis is then accomplished by a standard
nonuniform FB synthesis algorithm.

(ii) If the conditions of Prop. 1 are violated but
°

kPIk
lcmpaq{ak is small enough, Gpθ, F, aq can be trans-

formed into an equivalent uniform FB, i.e. a FB with uniform

downsampling factor lcmpaq, (see [18] for details) and a dual

FB can be easily obtained using standard algorithms for the
computation of dual uniform FBs.

(iii) If the number of channels in the equivalent uniform

FB is too large, the computation and storage of the dual FB
become unfeasible. In such cases, the action of the canonical

dual FB is computed using a conjugate gradients (CG)

algorithm. Iterative synthesis via CG benefits from the fact
that although the number of iterations necessary to achieve

the desired precision depends on the actual frame bound ratio

of the analysis FB, it does not require explicit estimates of the
frame bounds as opposed to other iterative approaches like

the classical frame algorithm [19]. Furthermore, since each
iteration computes the analysis followed by synthesis with

Gpθ, F, aq, the algorithm’s complexity is independent of the

structure of the dual FB. Similar to the results in [20] it can
be expected that a preconditioner often drastically reduces

the number of iterations required to achieve a certain precision.

Examples: We now mention a few interesting examples from

the vast selection of possible warping functions.

Example 1 (constant-Q). Choosing F � logb, with D � R
�

leads to a system of the form

θF,kptq � θplogbptq � kq � θF,0plogbptb
�k
qq.

Hence we obtain a family of dilates with constant center

frequency to bandwidth ratio (Q-factor) and it is natural to
choose a as the sequence of ak � ãb�k for some constant ã.



Example 2. The family of warping functions Flptq �

c
�

pt{dql � pt{dq�l
�

, for some c, d ¡ 0 and l P p0, 1s, is
an alternative to the logarithmic warping for the domain

D � R�. This type of warping provides a frequency scale
that approaches the limits 0 and 8 of the frequency range

D in a slower fashion than the constant-Q warping. In other

words, θFl,kptq is less deformed for k ¡ 0, but more deformed
for k   0 than in the case F � logb.

Example 3 (ERBlets). In psychoacoustics, the investigation of

filter banks adapted to the spectral resolution of the human

ear has been subject to a wealth of research, see [21] for an
overview. We mention here the Equivalent Rectangular Band-

width scale (ERB-scale) described in [22], which introduces a
set of bandpass filters following the human perception. In [20]

the authors construct a filter bank that is tailored to the ERB-

scale. A similar FB can be constructed using warped filters.
In our terminology the ERB warping function is given by

FERBptq � sgn ptq c1 log

�

1�
|t|

c2




, (11)

where the constants are given by c1 � 9.265 and c2 � 228.8.

Example 4. The warping function F ptq �

sgnptq
�

p|t| � 1ql � 1
�

for some l P p0, 1s leads to a

filter bank that is structurally very similar to a discrete

α-transform, see [7], [8]. Both of these systems provide a
method for constructing FBs adapted to frequency scales

ranging from linear (l � 1) to almost logarithmic (l Ñ 0).

In some sense, warping functions of the form (11) are the
natural limit for l Ñ 0.

Efficiency and the frame property: Similar to other FBs

comprised of bandlimited filters, the analysis and synthesis
with a warped filter bank with a fast convolution method has

complexity OpL logLq, see e.g. [23] for a detailed analysis

and performance tests. A blocking scheme, such as the one
proposed in [4] and implemented in LTFAT, achieves linear

complexity with good performance and only minor aliasing

effects in the FB coefficients, while preserving perfect recon-
struction.

Computing the dual filters given by (9) is a linear cost

operation, while computing a dual uniform FB involves the

inversion of L{ lcmpaq matrices of size lcmpaq � lcmpaq

resulting in cubic (or slightly better) complexity. But note that

dual filters can be precomputed and reused. Iterative inversion

via CG requires, for a given warped FB, a constant number
of analysis/synthesis steps and is therefore of the same

complexity order as the analysis and synthesis algorithms.
More details can be found in [20].

Signal analysis:

To demonstrate the effect of different warping functions, we

have computed filter bank coefficients of a test signal with the
following warping functions:

 F pxq � 10 logpxq, obtaining a constant-Q filter bank,

 F pxq � 21.4 sgnpxq log
10
p1 � |x|{229q, obtaining an

ERBlet filter bank,
 F pxq � sgnpxqp

a

1� |x| � 1q and
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Fig. 2. Time-frequency plots of the “Kafziel” test signal associated with
different warping functions, using 4 bins/unit each: (top-left) logarith-
mic warping F pxq � 10 logpxq, (top-right) ERBlet warping F pxq �

21.4 sgnpxq log10p1 � |x|{229q, (bottom-left) square root warping F pxq �

sgnpxqp
a

1� |x| � 1q and (bottom-right) linear warping F pxq � x{100.
Intensity is in dB, the colorbar on the bottom-right is valid for all plots.

 F pxq � x{100, obtaining a uniform filter bank.

For the logarithmic warping, we selected kmin � tF p50qu, and
0 for the other examples. The bins{unit parameter was set

to B � 4. The test signal “Kafziel” is a 12 sec excerpt from
a piece for piano and violin sampled at 44.1 kHz. Results

are provided in Figure 2, illustrating how different warpings

emphasize different frequency regions and provide their own
time/frequency resolution trade-off.

Stability of the frame bounds: For the warping functions

already used in the previous paragraphs, we have analyzed the
dependence of the frame bounds and redundancy. The starting

point of our experiment is a Hann window prototype with

2{3 overlap and maximal downsampling rates satisfying the
second part of Prop. 1, yielding (approximately1) tight frames

with redundancy 3 in all cases.

To obtain lower redundancy systems, we simply divide the

downsampling factors by a redundancy factor. For reasons
of stability, the downsampling factors akmin

and akmax�1 are

not modified, but instead the filters gkmin
and gkmax�1 are

appropriately re-normalized.

Table I shows estimates for the frame bound ratio of the
resulting analysis FBs. The estimate for the upper frame

bound is obtained through the MATLAB internal function
eigs, supplied with an efficient implementation of the frame

operator of the warped FB (analysis, followed by synthesis

with tgn,kun,k). For any redundancy factor smaller than 1,
estimating the lower frame bound additionally requires an

inverse of the frame operator, which we obtain by conjugate

gradients iterations (pcg in MATAB). Therefore, the results

1Sampling issues might produce slight deviations if some of the used filters
have very small bandwidth.



TABLE I
FRAME BOUND RATIOS OF VARIOUS WARPED FILTER BANKS. FROM TOP

TO BOTTOM: LINEAR WARPING F pxq � x{100, SQUARE ROOT WARPING

F pxq � sgnpxqp
a

1� |x| � 1q, ERBLET WARPING

F pxq � 21.4 sgnpxq log10p1 � |x|{229q AND LOGARITHMIC WARPING

F pxq � 10 logpxq. THE COLUMNS INDICATE THE REDUNDANCY FACTOR,
COMPARED TO THE MINIMAL REDUNDANCY SATISFYING PROP. 1.

1 7/8 3/4 5/8

linear 1.000 1.016 1.256 2.708

square root 1.000 1.080 1.360 3.611

ERB 1.000 1.043 1.481 4.360

logarithmic 1.014 1.080 1.536 4.438

TABLE II
ACTUAL REDUNDANCY OF THE FILTER BANKS USED IN THE FRAME

BOUND EXPERIMENT. ROWS AND COLUMNS INDICATE THE WARPING

FUNCTION AND REDUNDANCY factor RESPECTIVELY, SEE TABLE I.

1 7/8 3/4 5/8

linear 2.970 2.617 2.255 1.893

square root 2.946 2.594 2.235 1.880

ERB 2.828 2.508 2.185 1.864

logarithmic 2.832 2.511 2.185 1.859

in Table I are subject to numerical inaccuracies and might

deviate slightly from the actual frame bound ratio. In Table
II, we also provide the actual redundancy of the FBs used in

this example.

VI. CONCLUSION

We propose a novel method for the construction of filter

banks adapted to nonlinear frequency scales, such that it is

straightforward to achieve the tight frame property simply
by selecting a good filter prototype and sufficiently small

downsampling factors. We showed experimentally that the

frame properties are quite robust under higher decimation,
achieving low redundancy.

The associated analysis and synthesis operations can be

efficiently implemented and reconstruction filters can either

be precomputed or simulated through iterative reconstruc-
tion. All the necessary methods and some warped families

are already implemented in the open-source LTFAT Toolbox
(http://ltfat.sourceforge.net/).

A reproducible research addendum with MATLAB scripts
that compute the plots and tables in this contribution is

available at http://ltfat.sourceforge.net/notes/039/. For deeper
results on warped systems for continuous-time signals, refer to

[16] and [24]. The warping procedure we propose has already

proven useful in the area of graph signal processing [25].
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