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ABSTRACT. The Discrete Gabor Transform (DGT) is the most com-
monly used signal transform for signal analysis and synthesis using a
linear frequency scale. The development of the Linear Time-Frequency
Analysis Toolbox (LTFAT) has been based on a detailed study of many
variants of the relevant algorithms. As a side result of these systematic
developments of the subject, two new methods are presented here. Com-
parisons are made with respect to the computational complexity, and
the running time of optimised implementations in the C programming
language. The new algorithms have the lowest known computational
complexity and running time when a long FIR window is used. The im-
plementations are freely available for download. By summarizing general
background information on the state of the art, this article can also be
seen as a research survey, sharing with the readers experience in the
numerical work in Gabor analysis.
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1. INTRODUCTION

The finite, discrete Gabor transform (DGT) of a signal f of length L is
given by
L1

(1.1) c(m,n,w) = Z f(1,w)g (I — an)e 2mm/M
1=0

Usually, g is a window (filter prototype) that localizes the signal in time
and in frequency, i.e. typically a real-valued, smooth function of good decay,
symmetric around the origin (hence with a Fourier transform with similar
properties), but the definition of the DGT imposes no rescrictions on g. This
property has been used to lower the computational complexity of sparse com-
pression techniques |28, ?|. The DGT is equivalent to a Fourier modulated
filter bank with M channels and decimation in time a [7], and it is a valuable
tool for time-frequency analysis when a linear frequency scale is desired. Be-
cause of its popularity, it has many names, including the windowed Fourier
transform or the short-time Fourier transform. In this paper, we will ex-
clusively refer to it as the DGT, and use the name the short-time Fourier
transform (STFT) to refer to the DGT with a = 1 and M = L. A popular
choice for the window g is a finite impulse response (FIR) window that is
well localised in the time-frequency plane. As all windows that we will use
1
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in this paper are technically FIR, we will use the term to refer to windows
which have a significantly shorter support than the transform length.

Many algorithms have been proposed for the computation of the DGT.
There are three structures in the DGT with an FIR window which are typi-
cally exploited by algorithms:

(1) Coefficients are regularly spaced in time
(2) Coefficients are regularly spaced in frequency
(3) The window is FIR

The discovery of the fast Fourier transform (FFT) [12] made it possible to
exploit the time- and frequency structure of the DGT. A classical method
to compute the DGT is to window a signal in the time domain, and then
compute an FFT of the windowed samples. This algorithm is commonly
known as weighted overlap-add [34], and it exploits the FIR and frequency
structure of the DGT. It is possible to improve upon this simple algorithm
using Poisson summation, which was first done by Portnoff [29]. The Portnoff
algorithm does not exploit the time-structure of the DGT, and therefore it
can be used to compute DGTs which are not structured in time, so-called
non-stationary Gabor transforms [4].

Another approach is to view the DGT as a filter bank, and then compute
each subband signal using the overlap-add algorithm [21, 36]. This algorithm
exploits the time and FIR structure, but not the frequency structure. It is not
as computationally efficient as the Portnoff algorithm, but because it does
not exploit the frequency structure, it can be used for all filter banks that
have a regular sampling in time, so-called uniform filter banks [8]. Many of
these early DGT algorithms were discovered in search for an efficient method
to compute the phase vocoder [17]. A unified view of these algorithms and
the extension to DGT synthesis was presented in [2].

A third approach would be to simultaneously exploit the time- and fre-
quency structure of the DGT. For a non-redundant Gabor transform (a = M
n (1.1)) this can be done efficiently by a Zak-transform of the signal and
window [3]. In the case when the window and signal have the same length, a
factorization of the frame operator matrix was found by Zibulski and Zeevi
in [41]. The method was initially developed in the L? (R) setting, and was
adapted for the finite, discrete setting by Bastiaans and Geilen in [5]. They
extended it to also cover the analysis/synthesis operator. A simple, but not
so efficient, method was developed for the Gabor analysis/synthesis operator
by Prinz in [30]. Strohmer [37] improved the method and obtained the lowest
known computational complexity for computing the Gabor frame operator,
but Strohmer did not provide a method to carry out the actual computation
of the DGT. In this paper we extend Strohmer’s method to also cover the
Gabor analysis and synthesis operators providing a fast way to compute the
DGT. We shall refer to this algorithm as the factorization algorithm. These
methods do not exploit the FIR property of the window, meaning that they
can be used to efficiently calculate transforms in which the signal and window
have the same length. There are several advantages of using long windows:
it is possible to do efficient signal processing without worrying about errors
introduced by truncating a window and it is possible to use windows that
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have a slow decay in the time domain. As an example, non-compactly sup-
ported windows like the Gaussian and its tight and dual windows can be
used without truncation. While the time-windowing and OLA algorithms
are part of the curriculum of a typical course on digital signal processing,
the combined time-frequency algorithms are far less well-known.

The aforementioned algorithms all exploit two out of the three structures
of the DGT with an FIR window. In this paper we present an algorithm that
exploits all three structures, by using the factorization algorithm within an
overlap-add algorithm. The result is an algorithm that can efficiently handle
long windows and block-processing of signals.

The factorization algorithm uses fewer floating point operations than the
algorithm presented in [5], although they have the same asymptotic compu-
tational complexity, O (N M log M), where M is the number of channels and
N is the number of time steps. The overlap-add-factorization algorithm has
a linear running time with respect to signal length. A more accurate flop
count is presented later in the paper.

In Section 2 we present the mathematical definitions used in the rest of the
paper. In Section 3 we derive the Portnoff and factorization algorithm, and
the extension by overlap-add is presented in Section 4. In Section 5 we discuss
how to adapt the algorithms for real-valued signals and windows. In Section
6 we present extensions and specializations of the factorization algorithm.
Section 7 presents a detailed analysis of the computational complexity of each
algorithm, and Section 8 deals with the implementation issues presenting
actual timings of the algorithms on a standard desktop computer.

2. DEFINITIONS

To make the formulas in his paper shorter and more readable, we shall
denote the set of integers between zero and some number L by (L) =
0,...,L — 1. We use the “” notation in conjunction with the DFT to de-
note the variable over which the transform is to be applied. Another related
notation used in this paper is the “:” notation used to denote all elements
indexed by a variable. As an example, if C € CM*N then CiisaMx1
column vector, C . is a 1 x N row vector and C.. is the full matrix. This
notation is commonly used in MATLAB and FORTRAN programming and in
some textbooks, [19].

In this paper, the unitary Discrete Fourier Transform (DFT) of a signal

f € CF is defined by
1 L—-1 ;
_ —2mikl/L
(2.1) (Fef)(k) = = ,; fhe :

The cyclic convolution f * g of two functions f,g € C¥ and the involution
f* is given by

(2.2) (fxg) () = fR)g(l=k), Te(L)

(2.3) ffO) = f=, 1ell),
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The cross-correlation is given by convolution with an involuted function. It
can be computed efficiently using the discrete Fourier transform:

(2.4 (F2gW = VIF (RN O g () 0.

In this setting the Poisson summation formula looks as follows

b—1
(2.5) Fum (Z g(- + kM)) (m) = Vb(FLg) (mb),
k=0
where g € CY, L = Mb with b, M € N.
A family of vectors ej, j € (J) of length L is called a frame if constants
0 < A < B exist such that

J—1
(2.6) AP <D e ? < BIfI?, vfech

j=0
An equivalent condition is to require that the family is a set of generators
for CL. The constants A and B are called lower and upper frame bounds.
If A = B, the frame is called tight. If J > L, the frame is redundant
(oversampled). Finite- and infinite dimensional frames are described in [11].

A finite, discrete Gabor system (g,a, M) is a family of vectors gy, , € CF

of the following form

(2.7) Gmn (1) = 2™mM g (1 —na), 1€ (L)

for m € (M) and n € (N) where L = aN and M/L € N. A Gabor
system that is also a frame is called a Gabor frame. The analysis operator
Cy: CL— CM*N associated to a Gabor system (g, a, M) is the DGT given
by (1.1). The Gabor synthesis operator D., : CM*N s CL associated to a
Gabor system (v, a, M) is given by

N—1M-1
(2.8) FO=>"Y" c(mn)e™™/My (1l —an).

n=0 m=0
In (1.1), (2.7) and (2.8) it must hold that L = Na = M©b for some M, N € N.
Additionally, we define ¢, d, p,q € N by

(2.9) c=ged(a,M) , d=ged(b,N),
a b M N
(2.10) p=_=2 . 4= =

where GCD denotes the greatest common divisor of two natural numbers.
With these numbers, the redundancy of the transform can be written as
L/ (ab) = q/p, where q/p is an irreducible fraction. It holds that L =
cdpq. The Gabor frame operator S, : CL' — CL of a Gabor frame (g, a, M)
is given by the composition of the analysis and synthesis operators S, =
D,Cy. The Gabor frame operator is important because it can be used to
find the canonical dual window g% = Sg_lg and the canonical tight window

= Sg_l/zg of a Gabor frame. The canonical dual window is important
because D ga is a left inverse of Cy, so the canonical dual window can be used
to perfectly reconstruct a signal from its DGT coefficients. The canonical
tight window gives perfect reconstruction if it is used for both analysis and
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Algorithm 1 Window factorization
WFAC(g, a, M)

(1)

(2)

(3) tmp (s) <g(r+c-(k-gq—1l-p+s-p-qgmod d-p-q))
(4)  end for

(5)  Phi(r,k,l,:) <DFT(tmp)

(6) end for

(7) return Phi

Algorithm 2 Discrete Gabor transform by factorization
DGT(f,g,a, M)

(1) Phi =wrAC(g,a, M)

(2) for r = (c)

(3)  for k=(p), I = (g), w= (W)

(4) for s = (d)

(5) tmp(s) «f(r+(k-M+s-p-M—1-hg-amodL),w)

(6) end for

(7) Psitmp (k,l +w - q,-) <DFT(tmp)

(8)  end for

(9)  for s = (d)

10) G < Phi(:,:,1,s)

11) F «+ Psitmp(:,:,s)

12) Ctmp(:,:,8) « G - F

13)  end for

14)

15)

16)

17)

18)

19)

20)

21)

92)

23)

24)

for u = (q), I = (q), w = (W)
tmp <1DFT(Ctmp (u,l + w - q,:))
for s = (d)
coef (r+1l-c,u+s-q—1-hg mod N,w)« tmp(s)
end for
end for
end for
for n = (N),w = (W)
coef (:,n,w) <DFT(coef (:,n,w))

synthesis. For more information on Gabor systems and properties of the
operators C, D and S see [20, 15, 16].

We shall study the DGT applied to multiple signals at once. This is for
instance a common subroutine in computing a multidimensional DGT. The
DGT defined by (1.1) works on a multi-signal f € C**W where W € N is
the number of signals.
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3. THE FACTORIZATION ALGORITHM

To derive a faster DGT, one approach is to consider the analysis operator
Cy as a matrix, and derive a faster algorithm through unitary matrix factor-
izations of this matrix [37, 31]. Another approach is to consider properties
of the Zak transform [5]. The Zak transform method has the downside that
values outside the fundamental domain of the Zak transform require an ad-
ditional step to compute. In the present paper we have chosen to derive the
algorithm by directly manipulating the sums in the definition of the DGT.

To find a more efficient algorithm than (1.1), the first step is to recognize
that the summation and the modulation term in (1.1) can be expressed as a
DFT:

(3.1) ¢ (m,n,w) = VLF, (f(-,w)g(- - an)) (mb).

If the window used is an FIR window, and if the length of the support of the
window is equal to M, then (3.1) is the weighted overlap-add algorithm [34].
We can improve upon this because we do not need all the coefficients com-
puted by the DFT appearing in (3.1), only every b’th coefficient. Therefore,
we can rewrite by the Poisson summation formula (2.5):

b—1
c(m,n,w) = VMFy (Z fG+mM,w)g (- —i—erM—an)) (m)
=0

(3.2) = (FuK (,n,w)) (m),

where
b—1

(33) K(j,n,w)=vVM Y f(j+mMw)g(j+mM —na),
m=0

for j € (M) and n € (N). From (3.2) it can be seen that computing the
DGT of a signal f can be done by computing K followed by DFTs along
the first dimension of K. This is the algorithm reported by Portnoff in [29].
The equation similar to (3.3) for the frame operator is known as the Walnut
representation of the frame operator [39].

To further lower the complexity of the algorithm, we wish to express the
summation in (3.3) as a cross-correlation.

We split the variable j into two new variables r and [ using j = r+1lc with
r € (c), | € (¢) and introduce hy, hps € Z such that the following is satisfied:

(3.4) Cc = hMM — haa.

This equation is known as Bézouts identity, and the two integers h, and hys
that solve the equation can be found by the extended Euclidean algorithm
for computing the GCD of a and M.
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Using (3.4) and the splitting of j we can express (3.3) as
K (r+le,n,w)

b—1

(35)= VMY f(r+lc+mMw)g(r+1(hyM — hea) + mM — na)
=0
b—1

(3.6)= VM > f(r+lc+mM,w)g(r+ (m+lhy) M — (n+1h,)a)
=0

We substitute m + lhys by m and n + lh, by n and get
K (r+le,n —lhg,w)

b—1

(37) = VM f(r+lc+ (m—lhy) M,w)g (r + M — na)
m=0
b—1

(38) = VMY f(r+mM+1(c—hyM),w)g(r+mM — na)
m=0

We split m = k+ $p with k € (p) and § € (d) and n = u+ sq with u € (g)
and s € (d) and use that M = cq, a = c¢p and ¢ — hyy M = —hga:

p—1d—1

K (r+le,u+ sq—lhg,w) = vMZZf(r+kM+§pM—lhaa,w) X
k=0 §=0

(3.9) xg(r+kM —ua+ (5§ —s)pM)

Having expressed the variables j, m, n using the variables r, s, s, k, [, u we
have now indexed f using § and ¢ using (5§ — s). This means that we can
view the summation over § as a cross-correlation, which can be efficiently
computed using a DFT. If we define

(3.10) Ul (k1 +wq) = Faf (r + kM + -pM — lha,w),
(3.11) Y (k,u) = VMFyug (r + kM + -pM — ua),
then by using (2.4) we can write (3.9) as

K (r+lc,u+ 8q — lhq,w)

p—1
(3.12) = VA F (Y 1 wg) BT (b)) (3)
k=0
p—1
(3.13) = Vdr,! (Z Ul (k14 wq) @Y. (k:,u)) (3)
k=0

If we consider \I/fis and @?75 as matrices for each r and s, the sum over k in
the last line can be written as matrix products. The factorization algorithm
(Algorithm 2) follows from this.

4. EXTENSION BY OVERLAP-ADD

The factorization algorithm requires all data to be available beforehand.
However, if the window is finitely supported (FIR), then a convolution can
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be computed by an overlap-add (OLA) algorithm [36, 21]. The OLA algo-
rithm is a classical algorithm to convolve a long signal with an FIR window
by splitting the convolution into smaller convolutions, which can each be
efficiently calculated by an FFT.

The OLA algorithm works by partitioning a system of length L into blocks
of length Lj such that L = LyNy, where Ny is the number of blocks. The
block length must be longer than the support of the window, L > Ly. To
perform the computation we take a block of the input signal of length L
and zero-extend it to length L, = L; + Ly, and compute the convolution
the extended signal using the similarly extended window. Because of the
zero-extension of the window and signal, the computed coefficients will not
be affected by the periodic boundary conditions, and it is therefore possible
to overlay and add the computed convolutions of length L, together to form
the complete convolution of length L. The downside to this is that the total
length of the small convolutions is longer than the long convolution by a
fraction of

Ly  Lg+ Ly

PTL T L,
Therefore, a trade-off between the block length Lj and the window length
Ly must be found, so that the block length is long enough for (4.1) to be
close to one, but at the same time small enough to not impose a too long
processing delay.

The total computational effort of the small FFTs is less than computing
the large convolution by a direct approach, or by zero-extending the filter
and performing a long FFT. More importantly for applications, the OLA
algorithm can be performed in a block-processing setting, where the input
data is continuously produced.

The DGT can be expressed using convolutions as

(42) c(m,n) = 6*27rimn/Mf " (Mmbg*) ’

(4.1)

where M,,; is the modulation operator
(4.3) (Mypg) (1) = ™™ g (1), 1= (L)

When computing a DGT by the OLA algorithm, it is only necessary to
compute the FFT of the input signal once as it can be reused for all channels.
Furthermore, the Poisson summation formula can be used, as we only need
a subsampling (by the hop-size a) of the IFFT. These are major reductions
in computational complexity over the verbatim OLA algorithm applied to
each channel. The flop count of this algorithm is listed in Table 1 under the
label "OLA’.

To use the OLA algorithm with Algorithm (2), one replaces the small
convolutions in the OLA algorithm by computation of the DGT with an
FIR window. In the rest of this paper, we refer to this algorithm as the
Fac-OLA algorithm.

5. THE DGT FOR REAL-VALUED SIGNALS

It is a common case that both the signal and the desired window for a
DGT are real-valued. In this case, (3.3) is also real-valued and hence the
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Algorithm 3 Canonical Gabor dual window
GABDUAL(g, a, M)

(1) Phi =WFAC(g,a, M)

(2) for r = (c), s = (d)

(3) G+« Phi(::,r,s)

(4)  Phid(;,,rs) « (G-GT) '@

(5)

(6)

(7)

end for

DGT coeflicients along the frequency axis have the same symmetry as DE'T
coeflicients of a real-valued signal. It is therefore common practice in ap-
plications to only calculate and store the DGT coefficients corresponding to
the positive frequencies. This makes it possible to cut the memory usage
and computational complexity in half, and still maintain a direct relations-
ship to the DGT. Another common strategy for treating real-valued signals
efficiently [38] is to use an approach based on the discrete cosine or sine
transforms [1], but the Poisson summation formula for these transforms dif-
fers from (2.5) [33] so the factorization algorithm cannot be used unmodified.

As can be seen from (3.2), computing the DGT for real-valued signals can
be done by substituting the final DFT by a DFT that only calculates the
coefficients corresponding to the positive frequencies, see [6, 9] for a simple
algorithm.

For the Portnoff algorithm, this is all that is needed to get the full re-
duction in computational complexity, as (3.3) is calculated using only real
arithmetic. For Algorithm (2), the aforementioned positive-frequency DFT
can be used to speed up line 7 and 15 in the algorithm, and the loop over s
in line 9 runs only through the integers (d/2 + 1) (for even d).

6. EXTENSIONS AND SPECIAL CASES

6.1. The synthesis operator. The algorithm just described can also be
used to calculate the synthesis operator D.. This is done by applying Algo-
rithm 2 in the reverse order and inverting each line. The only lines that are
not trivially invertible are lines 10-12, which become

10) T < Phi?(:,:,7, )

(11) C < Ctmp (3, 8)

(12) Psitmp(:,:,s) < T -C
where the matrices th’d(:, ;,7,8) should be left inverses of the matrices
Phi (:,:,r,s) for each r and s, if perfect reconstruction is desired.

The matrices Phi? (:,:, 7, s) can be computed by Algorithm 1 applied to a
dual Gabor window «y of the Gabor frame (g, a, M). It also holds that all dual
Gabor windows 7 of a Gabor frame (g, a, M) must satisfy that Phi? (:,:,r, s)
are left inverses of the matrices Phi (:,:,7,s). This criterion was reported in
[23, 24].

A special left-inverse in the Moore-Penrose pseudo-inverse. Taking the
pseudo-inverses of Phi (:,:,r,s) yields the factorization associated with the
canonical dual window of (g,a, M) [10]. This is Algorithm 3. Taking the
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polar decomposition of each matrix in @7 ; yields a factorization of the canon-
ical tight window (g, a, M). For more information on these methods, as well
as iterative methods for computing the canonical dual/tight windows, see
[25]. In [27] the authors have presented an efficient method for synthesis,
where the analysis window must be a short FIR window, but where the dual
system need not be explicitly calculated.

6.2. Special cases. We shall consider two special cases of the algorithm:

The first case is integer oversampling. When the redundancy is an integer
then p = 1. Because of this we see that ¢ = a and d = b. This gives (3.4)
the appearance

(6.1) a = hyrqa — hqa,

indicating that hp; = 0 and h, = —1 solves the equation for all values of a
and g. The algorithm can be simplified accordingly, and reduced to the well
known Zak-transform algorithm for this case [22].

The second case is the short time Fourier transform. In this casea =0 =1,
M=N=L c=d=1,p=1, ¢q =L and as in the previous special case
hyr = 0 and hy, = —1. In this case the algorithm can be reduced to a very
simple and well-known algorithm for computing the STFT.

7. COMPUTATIONAL COMPLEXITY

When computing the flop (floating point operations) count of the algo-
rithm, we will assume that a complex FFT of length M can be computed
using 4M logy M flops. A review of flop counts for FFT algorithms is pre-
sented in [26]. Table 1 shows the flop count for Algorithm 2 and com-
pares it with the definition of the DGT (1.1), with the Portnoff algorithm
(3.2), with the Zak-transform based algorithm published in [5], and with the
factorization-OLA algorithm presented in Section (4). When computing the
flop count, we assume that both the window and signal are complex valued,
except for the transforms for real signals, where both the signal and window
must be real-valued.

The flop count for definition (1.1) is that of a complex matrix-vector mul-
tiplication. All the other algorithms share the 4M N logs M term coming
from the application of an FFT to each block of coefficients and only dif-
fer in how (3.3) is computed. The Portnoff algorithm is very fast for a
small overlapping factor Ly/a, but turns into an O (L2) algorithm for a full

length window. The term L <8q +1+ %) in the [5] algorithm comes from
calculation of the needed Zak-transforms, and the 4L (1 + %) logy N term

comes from the transform to and from the Zak-domain. Compared to (3.10)
and (3.11) this transformation uses longer FFTs. The factorization algo-
rithm does away with the multiplication with complex exponentials in the
algorithm described in [5], and so the first term reduces to L (8¢). For real-
valued signals, the factorization algorithm uses half the flops of the complex
valued version. The Portnoff algorithm sees an even greater improvement,
as the computation of (3.3) can be done using only a quarter of the flops of
the complex valued version.
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TaBLE 1. Flop counts for different ways of computing the
DGT. First column list the algorithm, second column the flop
count for the particular algorithm. The term L, denotes the
length of the window used so Lg/a is the overlapping factor
of the window. Note for comparison that logy N = log, d +
log, q. For the OLA algorithms, p is given by (4.1). For the
real-valued transforms, the linear algebra algorithm use 1/4
of the flops of the complex-valued transform, the Portnoff
algorithm has the flop count specified in the table, and all
other algorithms use half as many flops as their complex coun-
terparts.

Alg.: Flop count

Portnoff. (3.2) SL% + 4N M logy M

Linear algebra. (1.1) | SMNL
Portnoff, real \ 2LL2 4 9N M log, M

Bastiaans et. al. [5] | L <8q +14 %) +4L (1 + %) logy N + 4M N log, (M)
OLA. [21, 36] \ p (8LM + 4Llog, (pLy) + 4M N log, (pN))
Factorization. Alg. 2 8Lq + AL (1 + g) logy d + 4MN log, (M)
Fac-OLA. P (SLq 4L (1 + g) log, (pd) + 4MN log, M)
55X 10° Flop count comparison X 107 Execution time comparison
® F"ortnoff ‘ ‘ F;onnoff ‘ ‘
----Fac ---- Fac
2 === Portnoff, real ) === Portnoff, real
o Fac, real S 1.5f | Fac, real
R
- go.s— IRt b
0.5F A —‘—‘_‘;‘_‘_;‘- ‘‘‘‘ TR 1 W ‘-‘-‘_‘—‘-““““ “““““““““
00 260 460 660 860 1000 OO 260 460 660 860 1000

Window length / samples Window length / samples

Ficurge 8.1. Comparison of the flop count and the actual
running time of the factorization and Portnoff algorithms.
The Gabor system used has a time shift of a = 40, M = 60
frequency channels, system length of L = 1800 and works on
W = 4 signals at once. The flop count and running time are
shown as functions of the window length L.

8. IMPLEMENTATION AND TIMING

The reason for defining the factorization algorithm on multi-signals, is
that several signals can be handled at once in the matrix product in line
12 of Algorithm 2. This is a matrix product of two matrices size ¢ x p and
p X gW, so the second matrix grows when multiple signals are involved.
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Doing it this way reuses the ®f ; matrices as much as possible, and this is
an advantage on standard, general purpose computers with a deep memory
hierarchy, see [14, 40]. It also makes it possible to reuse the results of the
indexing computations done in the permutations.

The benefit of expressing Algorithm 2 in terms of loops (as opposed to
using the Zak transform or matrix factorizations) is that they are easy to
reorder. The algorithm presented as Algorithm 2 is just one among many
possible algorithms depending on the order in which the r, s, k and [ loops
are executed. For a given platform, it is difficult a priory to estimate which
ordering of the loops will turn out to be the fastest. The ordering of the
loops presented in Algorithm 2 is the variant that uses the least amount of
extra memory.

Implementations of the algorithms described in this paper can be found
in the Linear Time Frequency Analysis Toolbox (LTFAT) available from
http://1tfat.sourceforge.net (see also the paper [35]). An appropriate
algorithm will be automatically invoked when calling the dgt or dgtreal
functions. The implementations are done in both the MATLAB / OCTAVE
scripting language and in C. A range of different variants of Algorithm 2 has
been implemented and tested, and the one found to be the fastest on a small
set of computers is included in the toolbox.

We have not created an efficient implementation of the Bastiaans & Geilen
algorithm [5] in C, because it is always inferior to the factorization algorithm.
Similarly, the OLA algorithm is always inferior to the Fac-OLA algorithm,
so neither of these two algorithms have been timed.

A comparison of the flop count and running time of the Portnoff and
factorization based algorithms are shown on Figure 8.1. From the figure it
can be seen that for the particular setup, the factorization algorithm (for
complex arithmetic) will be faster than the Portnoff algorithm if the window
is longer than 250 samples, which is close to what is predicted by the flop-
count. For real arithmetic, the cross-over point where the Portnoff algorithm
becomes slower than the factorization algorithm appears later because the
Portnoff algorithm gets a larger gain from using real arithmetic. All tests
were done on an Intel Core2 CPU operating at 2.4 GHz.

The speed of the factorization algorithm is highly dependent on the speed
of the underlying FFT library. A key issue is therefore to avoid FFT sizes
for which computation of the FFT is slow. This is usually the case when
the size of the FFT is prime or consists of a few large prime factors. In such
cases, the regular Cooley-Tukey algorithm [12] cannot be used directly, and
special algorithms [32] for prime sized factors must be used to reduce the
problem size to a highly composite number. When timing the factorization
algorithm, only FFT sizes of the form 2?3°5¢7¢, where a,b,c,d € N (such
as L = 44100 = 22325272) have been used. This technique was also used
in [18]. The result of running the factorization and Portnoff algorithm on
increasing problem sizes is shown on Figure 8.2. For the chosen setup, the
factorization algorithm is consistently faster than the Portnoff algorithm,
and as the input signals become longer, the factorization-OLA algorithms
starts to outperform the basic factorization algorithm.
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F1GURE 8.2. Comparison of the running time of the Portnoff,
factorization and fac-OLA algorithms for real valued signals.
The Gabor system used has a time shift of « = 40, M = 60
frequency channels, window length L, = 2400, block length
of Lp = 24000 and works on W = 4 signals at once. The
figures on the left and right show the behaviour of short and
long signals, respectively.

The cross-over point where one algorithm is faster than the other is highly
dependent on the interplay between the algorithm and the computer archi-
tecture. Experience from the ATLAS [40], FFTW [18] and SPIRAL [13]
projects, show that in order to have the highest performance, is it necessary
to select the algorithm for a given problem size based on previous tests done
on the very same machine. Performing such an optimization is beyond the
scope of this paper, but will be the target of future work.
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