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Introduction

LTFAT is a modern Matlab/Octave toolbox for doing
time/frequency, wavelet and frame analysis
Its purposes are:

To support teaching and learning in Fourier analysis, harmonic
analysis and digital signal processing
To provide a tested and documented toolbox of such quality
that it can be used for new scientific developments.
As a method for engineers and researchers to quickly try out a
method / transform.
As a method for researchers to push their discoveries to a
larger audience
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Quick overview

The project was started in 2004, and version 1.0 was released in
2011.

Basic Fourier analysis and signal processing, FIR windows
Discrete Gabor transform and its inverse
Time-frequency bases: Wilson and WMDCT
Filterbanks and non-stationary Gabor systems
Methods for constructing perfect reconstruction windows
Reassignment (sharpening) and instantaneous frequency
estimation
Non-linear analysis and synthesis methods
Auditory scales and range compression standards
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The DFT

The Discrete Fourier Transform dft(f)

c (k) =
1√
L

L−1∑
l=0

f (l) e−2πilk , k = 0, . . . , L− 1

Analyses a signal f ∈ CL in L distinct frequencies (it is an
orthonormal basis for CL)
Can be computed by a fast 4L log2 (L) algorithm, the FFT
Output is complex valued even for real-valued input, but you
can choose to keep only half the coefficients, or use a discrete
cosine/sine transform instead (dcti, dctii, dctiii, dctiv or
dsti, dstii, dstiii, dstiv)
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Signal processing
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Left plot shows the time representation of the sonar signal of a bat,
f (t).
Right plot shows the positive frequency representation, f̂ (ω).
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Time-Frequency analysis

The Short-time Fourier transform

(STFTg f ) (m, n) =
L−1∑
l=0

f (l) g (l − n)e−2πiml/L, m, n = 0, . . . , L−1
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Left plot shows a part of the bat signal overlaid with a Gaussian
window.
Right plot shows their pointwise product.
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Time frequency analysis 2
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The absolute value squared of the short time Fourier transform is
called the spectrogram, sgram.
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Subsampling the STFT

The Short time Fourier transform is highly redundant:
Input is in CL, output is in CL×L.

Simple solution, we subsample the STFT in a regular fashion:
The Discrete Gabor Transform dgt(f,g,a,M):

(Vg f ) (m, n) =
L−1∑
l=0

f (l) g (l − na)e−2πiml/M ,

where m = 0, . . . ,M − 1 and n = 0, . . . ,N − 1 with
L = Na = Mb for N, b ∈ N.
The output is in CM×N

We define the redundancy as the ratio of the number of
output to input coefficients:

red =
MN
L

=
M
a
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Subsampling the STFT

The points marked by dots on the figure on the left show the
placement of the coefficients on the right.
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Frames

The DGT is not a basis, how can we deal with a redundancy larger
than 1?

A family of vectors fj is a frame for a Hilbert space H iff there
exists 0 < A ≤ B <∞ such that

A ‖f ‖2 ≤
∑

j

|〈f , fj〉|2 ≤ B ‖f ‖2 , ∀f ∈ H.

Upper frame bounds guarantees stability
Lower framer bounds guarantees invertibility
The frame operator is given by

Sf =
∑

j

〈f , fj〉 fj .
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Special frames

The canonical dual frame (pseudo-inverse) is given by

f d
j = S−1fj

The canonical tight frame (polar decomposition) is given by

f t
j = S−1/2fj

We can get perfect reconstruction using either construction:

f =
∑

j

〈f , fj〉 f d
j

f =
∑

j

〈
f , f t

j
〉
f t
j
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Why frames

Gabor bases are not a good idea: Choose 2:

Basis
Good localization in both time and frequency
A low frame bound ratio B

A (the condition number)

In the continuous case: The Balian-Low theorem (1981 &
1985). Assume that g creates a Gabor basis for the real line:
Thenˆ

R
x2 |g (x)|2 dx =∞ or

ˆ
R
ω2 |ĝ (ω)|2 dω =∞
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Gabor frames

A Gabor frame is an exceptionally good construction, because the
frame operator (and its inverse) commutes with time-frequency
shifts:

gd
m,n = S−1gm,n =

(
S−1g

)
m,n =

(
gd
)

m,n

The canonical dual and tight frames are again Gabor frames
Therefore, you only need to apply the inverse frame operator
once to the window to get them: gabdual and gabtight.
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DGT example

a=10; M=40; L=a*M;
h=pherm(L,4); % 4th order Hermite function.
c=dgt(h,’gauss’,a,M);
figure(1); imagesc(abs(c).^2);
figure(2); plotdgt(c,a,’dynrange’,50);
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DGTREAL: a DGT for real-valued signals

Most signals occurring in applied sciences are real-valued
No need to mess with the negative frequencies.
Analysis: dgtreal. Synthesis: idgtreal

f=greasy; fs=16000;
a=10; M=200;
c=dgtreal(f,{’hann’,0.02*fs’},a,M);
plotdgtreal(c,a,M,fs,90);
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Reconstruction

Dual window in time domain Dual window in freq. domain

gabdual: Compute the window of the canonical dual Gabor
frame
gabtight: Compute the window of the canonical tight Gabor
frame
When used together with dgt/idgt or dgtreal/idgtreal
these windows ensure perfect reconstruction
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Time-frequency bases

Is the Balian-Low theorem end of the search for a time-frequency
basis with a good resolution?

Wilson bases / MDCT. A Wilson basis has a linear frequency
scale, and is constructed from a Gabor frame with redundancy
2. Discovered by 4 different research groups around 1986 -
1989.
Wavelets. Wavelets have a logarithmic frequency scale. Morlet
1970s, mathematicians 1980s and onwards, Multiresolution
Analysis, S. Mallat 1988/89
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TF bases

The Windowed Modified Discrete Cosine Transform:

c (m, n) =
√

2
L−1∑
l=0

f (l) cos
(
π

M

(
m +

1
2

)
l +

π

4

)
g(l − nM), m + n even

c (m, n) =
√

2
L−1∑
l=0

f (l) sin
(
π

M

(
m +

1
2

)
l +

π

4

)
g(l − nM), m + n odd

Methods implemented:
Transform and inverse: wmdct and iwmdct

Riesz dual and orthonormal window: wildual and wilorth

Frame bounds: wilframebounds
Wilson transform and inverse: dwilt and idwilt
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WMDCT example

dgtreal (redundancy=20) wmdct (redundancy=1)

fs=16000; % Sampling rate
c=wmdct(greasy,{’hann’,0.02*fs’},128);
plotwmdct(c,fs,90);
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Wavelets

The continuous wavelet transform is defined by

Wψ (a, b) =
1√
a

ˆ
R
f (t)ψ

(
t − b
a

)
dt, a > 0, b ∈ R

The discrete wavelet transform fwt is computed by

c0 (n) = f (n)

cj+1 (n) =
∑
k

cj (k) g (2n − k)

dj+1 (n) =
∑
k

cj (k) h (2n − k) ,

where g and h is a pair of quadrature mirror filters (QMF) that
splits a signal into its low (g) and high (h) frequency components.
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Tiling the TF-plane

Gabor Wavelet
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The current constructions

Fast Wavelet Transform fwt : Always split the low frequencies
Undecimated fwt ufwt: No subsampling
Wavelet filterbank tree wfbt : Selectively split low or high
frequencies
Wavelet packet transform wpfbt: Split and keep all splittings
Best basis search wpbest: Search for the optimal
representation in the wavelet packet
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FWT2 example

Standard Tensor

c = fwt2(cameraman,{’db’,8},4);
imagesc(dynlimit(20*log10(abs(c)),70));
axis(’image’); colormap(gray);
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Instantaneous frequency

The local instantaneous frequency of a signal can be computed in
several ways:

From the phase (Flanagan 1966)

IF (x , ω) =
∂

∂x
∠ (Vg f ) (x , ω)

From the full STFT (Auger 1995)

IF (x , ω) = −=
(
Vg ′ f (x , ω)
Vg f (x , ω)

)
If a signal is well approximated by a sine function close to the point
(x , ω) in the TF-plane, the frequency of this sine function is

ω + IF (x , ω) .
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Reassignment

The reassignment process moves a contribution to the spectrogram
from the point (x , ω) to the point

(x + IT (x , ω) , ω + IF (x , ω))
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Spectrogram of Bat signal.
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The reassignment process improves the precision of the
spectrogram, but the resolution must still obey the uncertainty
principle.
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Filterbanks

Spectrogram Auditory filterbank

c (m, n) =
L−1∑
l=0

f (l) gm (amn − l)

Sometimes the fixed frequency resolution of the dgt is not
desirable
filterbanks: Each frequency channel is controlled by its own
filter gm
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Non-uniform vs. uniform

filterbank: Each channel is a subsampling of a convolution
with a varying sampling distance am

ufilterbank: Uniform filterbank. a has the same value for all
channels.
general filterbanks are very flexible, because the subsampling
rate can be adapted to the window
uniform filterbanks are easily invertible, the canonical dual
frame is again a uniform filterbank
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Frames in LTFAT

A frame object in LTFAT is a struct defining a frame
The struct is created by frame

The struct is generally read-only
Simple code for generating canonical dual frames:
[Fa,Fs]=framepair(’dgt’,’gauss’,’dual’,40,60);

The information given to frame is not usually not enough to
completely determine the frame. The length of the input signal is
also needed, allowing the frame definition to be reused for various
input signals. Basic properties like redundancy and frame bounds
can be established without the length being determined.
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Basic methods

frame : Create frame
frana : Frame analysis operator
frsyn : Frame synthesis operator
frameaccel : Speed up frame application
plotframe : Plot frame coefficients
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A simple example

F=frame(’dgtreal’,’gauss’,50,200);
c=frana(F,greasy);
plotframe(F,c,16000,90);
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Information about the frame

framered : Redundancy of the frame
framebounds : Frame bounds
frameupperbound : (future) Approx. upper frame bound
framemat : Matrix representation of the synthesis operator
framelength : Length of frame to expand a given signal
framelengthcoef : Length of frame given a set of coefficients
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Currently supported frames

General / special frames
gen : general frame specified by a matrix
identity : The canonical orthonormal basis

Gabor like frames:
dgt : Gabor frame
dgtreal : Gabor frame for real valued signals
dwilt : Wilson basis
wmdct : Windowed modified cosine transform

Peter L. Søndergaard The Linear Time-Frequency Analysis Toolbox

32/ 42



Fourier and Wavelet

Pure frequency bases
dft

dcti, dctii, dctiii, dctiv

dsti, dstii, dstiii, dstiv

Wavelets
fwt : Fast Wavelet Transform
ufwt : Undecimated FWT
wfbt : Wavelet filterbank tree
wpfbt : Wavelet packet transform
cqt : Constant Q transform
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Filterbanks and NSDGTs

Filterbanks
filterbank : General filterbank
ufilterbank : Uniform filterbank
filterbankreal : Positive-frequency filterbank intended for
real-valued signals
ufilterbankreal : Uniform version of above

Non-stationary Gabor systems
nsdgt : Non-stationary Gabor system
unsdgt : Uniform non-stationary Gabor system
nsdgtreal : Non-stationary Gabor system for real-valued signals
unsdgtreal : Uniform non-stationary Gabor system for
real-valued signals
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Iterative frame inversion

Sometimes the canonical dual of a frame is not a frame of the same
type (i.e. non-uniform filterbanks). In these cases, the following
methods can be useful

franaiter : Inverse of the synthesis operator computed using
a conjugate gradient (PCG) method
frsyniter : Inverse of the analysis operator computed using
a conjugate gradient (PCG) method

.
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Reconstruction from absolute values

In some applications, only the absolute value of the frame
coefficients are of interest, and a common problem is to find the
signal having absolute value of its frame coefficients closest to a
given target

frsynabs : Synthesis from absolute value of frame coefficients
The method uses the Griffin-Lim algorithm, which is an iterative
algorithm using a succession of projections of the target onto the
reproducing kernel space, each time modifying the phase.
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Thresholding

thresh : Thresholding by value
largestn : Keep the N largest coefficients
largestr : Keep the ratio r of the largest coefficients
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Denoising by soft thresholding

Noisy image Soft thresholding

c=fwt2(fnoisy,{’db’,5},6);
cthresh=largestr(c,0.1,’soft’);
fthresh=ifwt2(cthresh,{’db’,5},6);

Peter L. Søndergaard The Linear Time-Frequency Analysis Toolbox

38/ 42



LASSO methods

franalasso solves the LASSO (or basis pursuit denoising)
regression problem for a general frame F : find the coefficients
c that minimize

1
2
‖Fc − f ‖2 + λ ‖c‖1 ,

where f is the input signal and λ is a penalization coefficient.
franagrouplasso solves the group LASSO regression
problem in the time-frequency domain: minimize a functional
of the synthesis coefficients defined as the sum of half the l2

norm of the approximation error and the mixed l1 / l2 norm of
the coefficient sequence, with a penalization coefficient λ.
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Frame multipliers

A multiplier is an operator given by

h =
K−1∑
k=0

m (k) 〈f , f a
k 〉 f s

k ,

where m is the symbol of the multiplier and {f a} and {f s} are the
analysis and synthesis frames.

Apply frame multiplier: framemul
Apply the adjoint of a frame multiplier: framemuladj
Apply the inverse of a frame multiplier: iframemul
Best approx. by frame multiplier: framemulappr
Eigenpairs of a frame multiplier: framemuleigs
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Gabor multiplier example
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Plans for the future

Version 2.0 expected around the end of the year:

Completed the basic wavelet package
Wigner distribution, fractional Fourier transform, prolate
spheroidal wave functions
Inclusion of YAWTB
Block processing interface to work with streaming data

Thank you very much for coming!
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