Large Time-Frequency Analysis Toolbox 2.0

Jordy van Velthoven, Zdeněk Průša and Peter L. Søndergaard

Introduction

and wavelet analysis along with associated operators and plotting routines. The frames |z-transform and fractional Fourier transform. framework functions here as a unifying layer for accessing the different linear transforms and their associated operators.

The LTFAT is started in 2003 by Peter L. Søndergaard. The current version of the toolbox is 2.0 and is freely available under terms of GPLv3 at http://ltfat.sourceforge.net. The toolbox works for the scripting languages Matlab and Octave and contains MEX/OCT interfaces written in C/C++ as a backend library.

The binary version of the LTFAT consists of the subdirectories that are listed below.

Description	Directory name
Fourier analysis	fourier
Gabor analysis	gabor
Wavelet analysis	wavelet
Filterbank routines	filterbank
Non-stationary Gabor analysis	nonstatgab
Frames framework	frames
Operator framework	operator
Supporting computational routines	comp
Signal processing	sigproc
Collection of signals	signals
Auditory related functions	auditory
Demo scripts	demos
Standalone source files written in C	src
Matlab MEX functions	mex
Octave C++ functions	oct

Fourier analysis

Operators

The Large Time-Frequency Analysis Toolbox (LTFAT) is a software toolbox for time- | The Fourier analysis category consists of a collection of basic transforms and operators | The operator framework works as the frame framework with an operator-like interface frequency analysis and synthesis. It is intended both as an educational and a computational and a computational associated with Fourier transforms with associated rather than explicitly creating matrices. The main operators are the frame multipliers and tool. It consists of a large number of linear transforms for Fourier analysis, Gabor analysis | operators and generalizations of these such as the generalized Goertzel algorithm, chirped | the spreading operators.

Description	Function name
Basic Fourier analysis	
Unitary discrete Fourier transform	dft
Inverse unitary discrete Fourier transform	idft
Generalized Goertzel algorithm	gga
Chirped z-transform	chirpzt
Cosine and sine transforms	
Discrete cosine transforms	dcti,dctii,
	dctiii,dctiv
Discrete sine transforms	dsti,dstii,
	dstiii,dstiv
Fractional Fourier transforms	
Discrete fractional Fourier transform	dfracft
Fast fractional Fourier transform	ffracft
Operations on periodic functions	
Involution	involute
Periodic convolution	pconv
Periodic cross-correlation	pxcorr
Periodic functions	
Periodic Hermite function	pherm
Periodic Gaussian function	pgauss

Description	Function name
General operator	
Construct an operator	operatornew
Apply an operator	operator
Apply the inverse of an operator	ioperator
Apply the adjoint of an operator	operatoradj
Best approximation by operator	operatorappr
Eigenpairs of an operator	operatoreigs
Matrix representation of an operator	operatormatrix
Frame multipliers	
Apply frame multiplier	framemul
Apply inverse frame multiplier	iframemul
Apply the adjoint of a frame multiplier	framemuladj
Best approximation by frame multiplier	framemulappr
Eigenpairs of a frame multiplier	framemuleigs
Spreading operators	
Spreading operator	spreadop
Apply inverse spreading operator	spreadinv
Symbol of adjoint spreading operator	spreadadj
Symbol of operator expressed as a matrix	spreadfun
Eigenpairs of spreading operator	spreadeigs

In the following sections the rationale behind the main categories of the LTFAT will be | The Gabor analysis category consists of a collection of time-frequency transforms on both shortly explained and a selection of their files will be listed. Most of the categories of the LTFAT are extensively discussed in [1] and [2].

Frames

The frames framework consists of several types of frames and methods associated with frames. The frames are presented in an object-oriented framework. This object-oriented framework provides an operator-like interface for working with frames rather than explicitly creating frame matrices. Therefore the properties of a frame are related to the attributes of an object and the methods associated with a frame with the methods of an object.

Frame methods Description Function name Creation Create a frame frame Create a frame pair framepair

framedual

Create the canonical dual frame

Gabor analysis

separable and non-seperable lattices, and includes several associated operators. The main time-frequency transforms are the Gabor, Wilson and modified discrete cosine transform.

Description	Function name
Basic time-frequency analysis	
Twisted convolution	tconv
Discrete symplectic Fourier transform	dsft
Zak transform	zak
Inverse Zak transform	izak
s0-norm	sOnorm
Gabor systems	
Discrete Gabor transform	dgt
Inverse discrete Gabor transform	idgt
Iterative reconstruction from spectrogram	isgram
Evaluate Gabor window	gabwin
Wilson bases and modified cosine transform	rms
Discrete Wilson transform	dwilt
Inverse discrete Wilson transform	idwilt
Modified discrete cosine transform	wmdct
Inverse modified discrete cosine transform	iwmdct
Evaluate Wilson window	wilwin
Reconstruction windows	
Canonical dual window	gabdual
Canonical tight window	gabtight
Window of Wilson orthonormal basis	wilorth
Riesz dual window of Wilson basis	wildual

Filterbanks

The filterbank category consists of a collection of computational routines for finite impulse response (FIR), frequency defined and band-limited filters. The filterbanks can, as the other linear transforms, be represented as a frame and are therefore strongly related to the other linear transforms in the LTFAT. The linear transforms that belong exclusively to the filterbank section are the constant Q-transform and ERBlet transform.

Description	Function name
General filterbanks	
Filterbank	filterbank
Uniform filterbank	ufilterbank
Inverse of normal or uniform filterbank	ifilterbank
Auditory inspired filterbanks	
Constant Q-transform	cqt
Inverse constant Q-transform	icqt
ERBlet transform	erblett
Inverse ERBlet transform	ierblett
Filter generators	
Logarithmically spaced filters	cqtfilters
ERB-spaced filters	erbfilters
Window construction	
Canonical dual filters	filterbankdual
Canonical tight filters	filterbanktight
Total frequency response	filterbankrespons

frametight
frameaccel
frana
frsyn
franaiter
frsyniter
plotframe
framegram
framebounds
framered
framelength
franabp
frsynabs
franalasso
franagrouplasso

Types of frames

Description	Frame name
General frames	
Frame specified by matrix	gen
Canonical orthonormal basis	identity
Linear frequency scale	
Gabor frame	dgt
Wilson basis	dwilt
Windowed modified cosine basis	wmdct
Logarithmic frequency scale	
Fast wavelet transform	fwt
Undecimated fast wavelet transform	ufwt
Constant Q-transform	cqt
Adaptable frequency scale	
Filterbank	filterbank
Uniform filterbank	ufilterbank
Wavelet tree	wfbt
Wavelet packet tree	wpfbt
Adaptable time scale	
Non-stationary Gabor frame	nsdgt
Uniform non-stationary Gabor frame	undsgt
Pure freqency bases	
Unitary discrete Fourier transform	dft
Discrete cosine transforms	dcti, dctii,
	dctiii, dctiv
Discrete sine transforms	dsti, dstii,
	dstiii, dstiv
Container frames	
Fusion frame	fusion
Tensor frame	tensor

Non-stationary Gabor analysis

The non-stationary Gabor analysis category includes generalizations of the Gabor systems. The non-stationary Gabor systems generalizes the standard Gabor systems, where the window function, the time step and the number of frequency channels are fixed; to systems with evolving properties over time.

Description	Function name
Non-stationary Gabor transforms	
Non-stationary Gabor transform	nsdgt
Inverse non-stationary Gabor transform	insdgt
Uniform non-stationary Gabor transform	unsdgt
Window construction	
Non-stationary dual windows	nsgabdual
Non-starionary tight windows	nsgabtight

Wavelet analysis

The wavelet analysis category consists of linear time-frequency transforms with an adaptable or logarithmic frequency scale in contrast to the linear transforms with an adaptable time scale or linear frequency scale of the sections on Gabor and non-stationary Gabor analysis, respectively.

Block processing

The block processing framework is a self-contained framework within the LTFAT for realtime audio processing in Matlab and Octave. Together with the time-frequency analysis and synthesis capabilities of the LTFAT, it allows audio processing in the transform domain.

Description	Function name
Basic methods	
Construct a block-stream	block
Read samples into block	blockread
Play samples from a block	blockplay
Append block to a file	blockwrite
Control panel	blockpanel
Block-adapted transforms	
Block analysis	blockana
Block synthesis	blocksyn

LTFAT related

There are several sources related or connected to the LTFAT. The most important are the documentation, LTFAT note series and mat2doc documentation system. All these sources can be found on the homepage of the LTFAT.

• Documentation: There are several forms in which the LTFAT is documented. The most complete and up-to-date description of the toolbox is the auto-generated documentation on the LTFAT homepage. The online documentation is generated from the headers of the M-files of the functions and models that are included in the LTFAT. The documentation of the M-files is also available as a reference manual.

Description	Function name
Wavelet transforms	
Fast wavelet transform	fwt
Inverse fast wavelet transform	ifwt
Undecimated fast wavelet transform	ufwt
Inverse undecimated fast wavelet transform	ufwt
Wavelet filterbanks	
Wavelet filterbank tree	wfbt
Inverse wavelet filterbank tree	iwfbt
Undecimated wavelet filterbank tree	uwfbt
Inverse undecimated wavelet filterbank tree	iuwfbt
Wavelet packet filterbank tree	wpfbt
Inverse wavelet packet filterbank tree	iwpfbt
Wavelet filters in time-domain	
Coiflet filters	wfilt_coif
Daubechies filters	wfilt_db
Biorthogonal spline wavelet filters	wfilt_spline
Dense grid framelets	wfilt_dgrid

• The LTFAT note series: The LTFAT note series is a collection of texts that have a relation to the LTFAT. A LTFAT note can be anything from a preprint of a journal paper, a technical report or a thesis. The source of all the LTFAT notes are publically available.

• The mat2doc documentation system: Mat2doc is a system, written in Python as a wrapper around reStructuredText, for publishing documentation extracted from Matlab or Octave function headers. The documentation system creates documentation in several formats. The various formats that are currently supported are php, HTML, LaTeX and plain text. For example, all the online documentation and the reference manual of the LTFAT are generated trough the mat2doc documentation system.

References

[1] P. L. Søndergaard, B. Torrésani, P. Balazs. The Linear Time-Frequency Analysis Toolbox. International Journal of Wavelets, Multiresolution Analysis and Information, 10(4), 2012.

Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, P. Bal-The Large Time-Frequency Analysis Toolbox 2.0. (preprint), 2014. azs. http://ltfat.sourceforge.net/notes/ltfatnote030.pdf